Discriminative Probabilistic Prototype Learning
نویسندگان
چکیده
In this paper we propose a simple yet powerful method for learning representations in supervised learning scenarios where an input datapoint is described by a set of feature vectors and its associated output may be given by soft labels indicating, for example, class probabilities. We represent an input datapoint as a K-dimensional vector, where each component is a mixture of probabilities over its corresponding set of feature vectors. Each probability indicates how likely a feature vector is to belong to one-out-of-K unknown prototype patterns. We propose a probabilistic model that parameterizes these prototype patterns in terms of hidden variables and therefore it can be trained with conventional approaches based on likelihood maximization. More importantly, both the model parameters and the prototype patterns can be learned from data in a discriminative way. We show that our model can be seen as a probabilistic generalization of learning vector quantization (LVQ). We apply our method to the problems of shape classification, hyperspectral imaging classification and people’s work class categorization, showing the superior performance of our method compared to the standard prototype-based classification approach and other competitive benchmarks.
منابع مشابه
Generic probabilistic prototype based classification of vectorial and proximity data
In supervised learning probabilistic models are attractive to define discriminative models in a rigid mathematical framework. More recently, prototype approaches, known for compact and efficient models, were defined in a probabilistic setting, but are limited to metric vectorial spaces. Here we propose a generalization of the discriminative probabilistic prototype learning algorithm for arbitra...
متن کاملRejection Strategies for Learning Vector Quantization - A Comparison of Probabilistic and Deterministic Approaches
In this contribution, we focus on reject options for prototypebased classifiers, and we present a comparison of reject options based on statistical models for prototype-based classification as compared to alternatives which are motivated by simple geometric principles. We compare the behavior of generative models such as Gaussian mixture models and discriminative ones to results from robust sof...
متن کاملRegularized margin-based conditional log-likelihood loss for prototype learning
The classification performance of nearest prototype classifiers largely relies on the prototype learning algorithm. The minimum classification error (MCE) method and the soft nearest prototype classifier (SNPC) method are two important algorithms using misclassification loss. This paper proposes a new prototype learning algorithm based on the conditional log-likelihood loss (CLL), which is base...
متن کاملLearning spoken document similarity and recommendation using supervised probabilistic latent semantic analysis
This paper presents a model-based approach to spoken document similarity called Supervised Probabilistic Latent Semantic Analysis (PLSA). The method differs from traditional spoken document similarity techniques in that it allows similarity to be learned rather than approximated. The ability to learn similarity is desirable in applications such as Internet video recommendation, in which complex...
متن کاملObject recognition using proportion-based prior information: Application to fisheries acoustics
This paper addresses the inference of probabilistic classification models using weakly supervised learning. The main contribution of this work is the development of learning methods for training datasets consisting of groups of objects with known relative class priors. This can be regarded as a generalization of the situation addressed by Bishop and Ulusoy (2005), where training information is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.4686 شماره
صفحات -
تاریخ انتشار 2012